Projection
1 Definitions
1.1 Distance between point and set
The distance d from point \mathbf{y} \in \mathbb{R}^n to closed set S \subset \mathbb{R}^n:
d(\mathbf{y}, S, \| \cdot \|) = \inf\{\|x - y\| \mid x \in S \}
1.2 Projection of a point on set
Projection of a point \mathbf{y} \in \mathbb{R}^n on set S \subseteq \mathbb{R}^n is a point \pi_S(\mathbf{y}) \in S:
\| \pi_S(\mathbf{y}) - \mathbf{y}\| \le \|\mathbf{x} - \mathbf{y}\|, \forall \mathbf{x} \in S
if a set is open, and a point is beyond this set, then its projection on this set does not exist.
if a point is in set, then its projection is the point itself
\pi_S(\mathbf{y}) = \underset{\mathbf{x}}{\operatorname{argmin}} \|\mathbf{x}-\mathbf{y}\|
Let S \subseteq \mathbb{R}^n - convex closed set. Let the point \mathbf{y} \in \mathbb{R}^n и \mathbf{\pi} \in S. Then if for all \mathbf{x} \in S the inequality holds:
\langle \pi -\mathbf{y}, \mathbf{x} - \pi\rangle \ge 0,
then \pi is the projection of the point \mathbf{y} on S, so \pi_S (\mathbf{y}) = \pi.
Let S \subseteq \mathbb{R}^n - affine set. Let we have points \mathbf{y} \in \mathbb{R}^n and \mathbf{\pi} \in S. Then \pi is a projection of point \mathbf{y} on S, so \pi_S (\mathbf{y}) = \pi if and only if for all \mathbf{x} \in S the inequality holds:
\langle \pi -\mathbf{y}, \mathbf{x} - \pi\rangle = 0
- Sufficient conditions of existence of a projection. If S \subseteq \mathbb{R}^n - closed set, then the projection on set S exists for any point.
- Sufficient conditions of uniqueness of a projection. If S \subseteq \mathbb{R}^n - closed convex set, then the projection on set S is unique for any point.